
Environmental Modelling and Software 162 (2023) 105635

A
1

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: www.elsevier.com/locate/envsoft

Position Paper

pystorms: A simulation sandbox for the development and evaluation of
stormwater control algorithms
Sara P. Rimer a,1, Abhiram Mullapudi b,1,2, Sara C. Troutman b,1,2, Gregory Ewing c,
Benjamin D. Bowes d, Aaron A. Akin e,3, Jeffrey Sadler d,4, Ruben Kertesz f, Bryant McDonnell f,
Luis Montestruque f, Jon Hathaway e, Jonathan L. Goodall d, John Norton g, Branko Kerkez b,∗

a Argonne National Laboratory, Decision and Infrastructure Sciences Division, 9700 Cass Avenue, Lemont, IL, 60439, USA
b University of Michigan, Civil and Environmental Engineering Department, 2350 Hayward Avenue, Ann Arbor, MI, 48105, USA
c University of Iowa, Department of Civil and Environmental Engineering, 300 South Riverside Drive, Iowa City, IA, 52245, USA
d University of Virginia, Department of Engineering Systems and Environment, 151 Engineer’s Way, Charlottesville, VA, 22904, USA
e University of Tennessee, Department of Civil and Environmental Engineering, 851 Neyland Drive, Knoxville, TN, 37996, USA
f Xylem, Inc., 121 South Niles Avenue, 32, South Bend, IN, 46617, USA
g Great Lakes Water Authority, Detroit, MI, USA

A R T I C L E I N F O

Keywords:
Stormwater systems
Intelligent infrastructure
Adaptive control
Quantitative evaluation
Simulation sandbox
Open-source software

A B S T R A C T

Advances in cyber–physical technologies have enabled real-time sensing and adaptive control of stormwater
infrastructure. These smart stormwater systems allow for inexpensive, minimally-invasive stormwater control
interventions in lieu of new construction. However promising the area of smart stormwater control, there
still remain barriers – for experts and novices alike – to access shared tools and methods for investigating,
developing, and contributing to it. In an effort to make smart stormwater control research more methodical
and accessible, we present pystorms, an open-source Python-based simulation sandbox that facilitates the
quantitative evaluation and comparison of control strategies. pystorms consists of a collection of real world-
inspired smart stormwater control scenarios on which any number of control strategies can be applied and
tested via an accompanying Python programming interface and coupled stormwater simulator. pystorms
provides a framework for the rigorous and efficient evaluation of smart stormwater control methodologies
across diverse watersheds with only a few lines of code.
1. Introduction

The advent of smart cities is poised to transform the manage-
ment of our built environment (Harrison and Donnelly, 2011; Batty
et al., 2012; Chourabi et al., 2012; Kitchin, 2014; Bibri and Krogstie,
2017; Eggimann et al., 2017). Specific to stormwater, a new gen-
eration of smart and connected stormwater systems aims to reduce
flooding and improve water quality management by autonomously
sensing watershed parameters and controlling hydraulic components
across the watershed. These smart systems can provide an alterna-
tive to costly concrete-and-steel construction by squeezing even more

∗ Corresponding author.
E-mail addresses: srimer@anl.gov (S.P. Rimer), abhiram.mullapudi@xylem.com (A. Mullapudi), sara.troutman@xylem.com (S.C. Troutman),

gregory-ewing@uiowa.edu (G. Ewing), bdb3m@virginia.edu (B.D. Bowes), aakin@davisfloyd.com (A.A. Akin), jms3fb@virginia.edu (J. Sadler),
ruben.kertesz@xylem.com (R. Kertesz), bryant.mcdonnell@xylem.com (B. McDonnell), luis.montestruque@xylem.com (L. Montestruque), hathaway@utk.edu
(J. Hathaway), goodall@virginia.edu (J.L. Goodall), john@johnwnortonjr.com (J. Norton), bkerkez@umich.edu (B. Kerkez).

1 These authors contributed equally to the paper.
2 Present affiliation: Xylem, Inc., South Bend, IN, USA.
3 Present affiliation: Davis & Floyd, Charleston, SC, USA.
4 Present affiliation: United States Geological Survey, Middleton, WI, USA.

performance out of existing stormwater infrastructure. Early ideas of
controlling distributed stormwater systems in real-time date back to the
1970s (Trotta et al., 1977). The concept has, however, only recently
gained widespread attention—in large part due to the affordability of
internet-connected sensors, the increased capacity of data services, the
broader emergence of other autonomous systems such as self-driving
cars and robots, and the increasing prevalence of climate change stres-
sors such as changing rainfall patterns and sea level rise. Relative to
other fields of autonomy, however, smart water systems are still in
the early stages of adoption. Thus, developing and implementing smart
vailable online 25 January 2023
364-8152/© 2023 Published by Elsevier Ltd.

https://doi.org/10.1016/j.envsoft.2023.105635
Received 15 December 2022; Accepted 16 January 2023

https://www.elsevier.com/locate/envsoft
http://www.elsevier.com/locate/envsoft
mailto:srimer@anl.gov
mailto:abhiram.mullapudi@xylem.com
mailto:sara.troutman@xylem.com
mailto:gregory-ewing@uiowa.edu
mailto:bdb3m@virginia.edu
mailto:aakin@davisfloyd.com
mailto:jms3fb@virginia.edu
mailto:ruben.kertesz@xylem.com
mailto:bryant.mcdonnell@xylem.com
mailto:luis.montestruque@xylem.com
mailto:hathaway@utk.edu
mailto:goodall@virginia.edu
mailto:john@johnwnortonjr.com
mailto:bkerkez@umich.edu
https://doi.org/10.1016/j.envsoft.2023.105635
https://doi.org/10.1016/j.envsoft.2023.105635


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
water systems presents an exciting opportunity for researchers and
practitioners to propose new visions, standards, and technologies.

The intelligence of smart stormwater systems broadly refers to the
acquisition (i.e. ‘‘sensing’’) and processing of data into decisions and
actions (i.e. ‘‘control strategies’’) that are then used to guide the oper-
ation of gates, valves, pumps, and other actuators within a watershed
or drainage network. Ultimately, the logic embedded via these control
rules determines how water is moved around the collection system to
meet specific performance objectives, such as the reduction of flooding
or improvement of water quality. Developing this control logic poses
a major research frontier (Kerkez et al., 2016) and will require the
engagement of groups and individuals from a wide range of experience
and expertise.

Yet, entering this research field is presently precluded by a number
of practical barriers. For new groups to make early contributions,
they must have access to simulation testbeds, real-world inspired case
studies, and appropriate control objectives. Due to privacy and safety
concerns, access to stormwater network models and management de-
tails is difficult to come by without personal connections to those who
manage local watersheds or municipal water systems. Thus, it can be
difficult for new groups to obtain the necessary details of how real-
world stormwater systems actually operate—leaving them to evaluate
their control algorithms solely on idealized ‘‘toy problems’’. Though
such idealized stormwater networks can aid in developing novel control
algorithms, the applicability of these control algorithms in a physical
system would require an evaluation in real-world-based stormwater
networks. When access to such details is available, developing compu-
tational simulations that are true to real-world systems and objectives
requires significant effort and expertise. Still, even when all of these
other barriers are addressed and promising control algorithms have
been proposed, they have usually all been evaluated on highly specific
case studies and simulators, making it difficult to evaluate the extent
of their success when applied to additional networks. In an effort to
address these limitations, the contribution of this paper is pystorms,
an open-source Python package comprised of:

(i) A collection of anonymized smart stormwater control scenarios
that facilitate the quantitative evaluation and comparison of
control strategies.

(ii) A programming interface and a stormwater simulator to pro-
vide a stand alone package for developing stormwater control
strategies.

Our aspiration is for pystorms to emerge as a community-driven re-
source that fosters accessibility and collaboration amongst researchers
and practitioners, both novices and experts alike. To facilitate broader
collaboration and accelerated adoption, this paper is accompanied by
an expanded supplementary information, online user guide,5 and code
to allow others to adopt the toolbox to their own control problems.

2. Background

2.1. Control of stormwater systems

A stormwater control problem can be defined as finding a strategy
to manipulate the flow of stormwater to achieve a desired water
quantity or quality objective. Traditionally, stormwater control has
relied on passive solutions, in which control is achieved via large-scale
and expensive construction. Instead, the emergence of microcontrollers,
wireless communication technologies, and low-cost sensors has allowed
for active solutions, in which existing infrastructure can be retrofitted
with low-cost wireless valves, pumps, and other actuators, installed
at strategic locations throughout a stormwater network, and utilized

5 pystorms.org/docs
2

adaptively, in real-time. Consequently, stormwater infrastructure can
now be instantly reconfigured to respond to its dynamic environment.

While real-time stormwater control engineering solutions were doc-
umented at least a decade earlier (Trotta et al., 1977), research-oriented
discussion of these implementations did not occur until 1989 (Schilling,
1989). Furthermore, while limited implementation of smart stormwater
control began at the end of the 20th-century, the 21st-century has
seen far more extensive and systematic successes, as described in
the foundational reviews of Schütze et al. (2004) and Vanrolleghem
et al. (2005). Some notable smart stormwater control implementations
include Ocampo-Martinez (2010), Gaborit et al. (2013), Vezzaro and
Grum (2014), García et al. (2015), Gaborit et al. (2016), Mullapudi
et al. (2017), Montestruque (2018), Sadler et al. (2019), Persaud et al.
(2019), Bowes et al. (2021). These references contain instances of
smart stormwater control from single control assets to watershed-scale
implementations. For more comprehensive reviews of stormwater con-
trol implementations, we direct the reader to some recently published
survey articles on the topic (Yuan et al., 2019; Lund et al., 2018;
Shishegar et al., 2018; van Daal et al., 2017; García et al., 2015).

2.1.1. Simulating stormwater systems
Due to safety concerns and the variability of storm events, it is

often infeasible to test various control strategies on actual stormwater
networks. A more practical approach is to first estimate the outcomes
of different control decisions in a computer simulated environment ,
before deciding to port them to real systems. These simulations can be
carried out using a computational stormwater model. The components
of such a model usually include a (i) runoff module and (ii) a routing
module, and are driven by (iii) precipitation events (e.g. rain, snow).
The runoff module converts precipitation into overland runoff; the
overland runoff then undergoes hydrological processes (e.g. infiltra-
tion, evaporation) and is hydraulically transported to the stormwater
collection system.

Over the years, several different software applications have been
developed for modeling and simulating stormwater networks. The dif-
ferent software applications all function in a similar manner: they
compute the dynamics of stormwater as it moves through its local wa-
tershed. The US-EPA’s Stormwater Management Model (SWMM) (Ross-
man, 2015), MIKE URBAN+ from the MIKE Powered by DHI software
suite,6 and the Model for Urban Stormwater Improvement Concep-
tualisation (MUSIC) by eWater7 are examples of popular stormwa-
ter software applications. The theory and computational details of
these models are summarized in Rossman and Huber (2015), Ross-
man (2017), Rossman and Huber (2016). While these models provide
powerful simulation adroitness for modeling hydraulic and hydrologic
phenomena, they confine real-time control to limited rule-based ap-
proaches, thus limiting their out-of-box use in the study of smart
stormwater systems.

2.1.2. Implementing adaptive control
Here, we aim to maintain the idea of control in its broadest but

most straightforward meaning: after receiving some sort of cue (from
a sensor or state estimate), an action is taken (for instance opening or
closing a valve) with the aim of achieving a desired outcome (such as
reducing flooding or improving water quality). When we implement
control, we are deciding on the course of action for optimizing our
system to meet some specified objective. A stormwater control strategy
seeks to formalize this process of deciding a set of actions. We define the
computational process of implementing this strategy as the stormwater
control algorithm.

Suppose a stormwater system with only one valve was installed,
and that valve can either be completely opened or closed every hour.

6 mikepoweredbydhi.com
7 ewater.org.au

https://www.pystorms.org/docs/build/html/getting_started.html
https://www.mikepoweredbydhi.com/products/mike-urban-plus
https://ewater.org.au/products/music/


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.

h
t
h
d
m
c
2
‘
i
q
s
t
c

3

s
f
p
s
w
s

t
a
m
a
w
s
t
t
d
u
d
o
o

s
n

o
c
t

Deciding on a pattern for the complete opening and closing of the valve,
over the period of a few hours to even a few days, presents a multi-
tude of permutations and is a non-trivial undertaking. By expanding
the task to allow for the valve to opened at any number of percent
increments between 0%–100%, the combination of actions that can
be implemented becomes even more expansive, making simple rule-
based or ‘‘if-else’’ algorithms either ineffective or bafflingly large. This
complexity is particularly true for more sizable drainage systems, where
tens to hundreds of valves need to be operated.

Hence, finding the ‘‘best’’ control actions is difficult and – by
nature – subjective. Furthermore, most algorithms are often only evalu-
ated on a single case study, and only in comparison to an uncontrolled
solution. While valuable, this has the effect of making most algorithms
appear very effective, since the only baseline that exists otherwise is
the unoptimized, ‘‘as-built’’ static system.

2.2. The need for a simulation sandbox

For new researchers and practitioners in the field of smart stormwa-
ter control, the barrier to entry is significant. Newcomers must spend
considerable time searching for real-world case studies, synthesizing
relevant control objectives, developing algorithms, and building the
capacity to carry out simulation in order to test new ideas. To grow
this research field and support its broader scientific context, there
is a need to better enable the cross-comparison of smart stormwater
control strategies, their algorithms, and the case study instances for
when they are used. While there have been some prior efforts to
benchmark specific stormwater networks in order to evaluate adaptive
control strategies (Schütze et al., 2017; Borsányi et al., 2008), there is
still a shortage of stormwater control case studies with diverse control
objectives.

Other research domains provide compelling examples of commun-
ity-driven simulation tool chains that have been developed for similar
cross-comparison needs. For example, the ARPA-E GRID DATA program
has enabled an active research community in the energy sector by
providing open source case studies and benchmarking tools of power
system networks (Advanced Research Projects Agency–Energy, U.S.
Department of Energy, 2016). In a similar vein, the water distribution
community has created their own active cross-comparison tools (Walski
et al., 1987; Ostfeld et al., 2008; Marchi et al., 2014) and websites.8 The
ydrology community has also developed a watershed-scale hydrome-
eorological dataset and model performance benchmarks for evaluating
ydrologic models (Newman et al., 2015). pystorms is our effort to
evelop a similar set of research tools for the stormwater control com-
unity. Additionally, we have also been inspired by the streamlined

ontrol algorithm testing of the OpenAI Gym toolkit (Brockman et al.,
016). As such, we contend that there is a need for a similar, more

‘out-of-the-box’’ software toolset with an unambiguous programming
nterface that allows stormwater control researchers to get started more
uickly. To that end, we have formulated pystorms as a simulation
andbox, in which we systematize a collection of stormwater control
estbed examples, and foster the experimentation and testing of new
ontrol strategies.

. Pystorms

To achieve the objectives of curating an open repository of smart
tormwater control testbed examples, and reducing the learning curve
or newcomers testing new control strategies, pystorms is under-
inned by two distinct features. First, it provides a collection of diverse
tormwater control scenarios, which are drawn from real-world urban
atersheds to encompass diverse features pertaining to stormwater

ystems (Section 3.1). Second, these scenarios are coupled with a

8 uknowledge.uky.edu/wdsrd, wateranalytics.org/EPANET
3

streamlined Python programming interface (Section 3.2) that explicates
the computational backend of a corresponding stormwater control sim-
ulator (Section 3.3). Together, these features provide researchers with a
standalone software package that focuses its usage on the development
and testing of stormwater control algorithms.

3.1. Scenarios

pystorms abstracts smart stormwater systems into scenarios. Each
scenario captures a combination of elements that comprise a stormwa-
ter control problem. A fully defined scenario includes a network topol-
ogy (the system or watershed being studied), inputs, a selection of
controllable and observable assets, as well as a clearly defined control
objective (we refer the reader to Fig. 1 and Table 1 for further details).
While users can – and are encouraged to – create their own scenarios, at
the time of writing, pystorms provides an initial collection of seven
scenarios, all drawn from real-world smart stormwater systems across
North America and Europe. The collection of scenarios spans a variety
of stormwater systems that address a diverse set of urban watershed
needs with various control objectives. The subcatchment areas range
from 0.12–67 km2 in size, and include both combined and separated
stormwater arrangements. A summary of the collection of scenarios are
presented in Table 2, with their more detailed descriptions provided
throughout this paper’s supplementary documents.

While our aim is for this collection of scenarios to represent a
myriad of smart stormwater control applications, we recognize that it
is certainly not exhaustive. Ultimately, we aspire to grow the pys-
torms repository of stormwater scenarios through community-driven
contributions of new scenarios. Accordingly, we provide extensive doc-
umentation9 for users to contribute their own scenarios, or modify the
existing ones.

3.2. Workflow

pystorms provides a suite of pre-defined smart stormwater sys-
ems, and is designed to be both intuitive and accessible for users at
ny level of expertise or experience of control systems and stormwater
anagement. Via three intuitive function calls, the user is able to iter-

te through the simulation of a smart stormwater scenario, and interact
ith the scenario at any of the simulation timesteps by querying its

tates or changing the settings of its control assets. pystorms provides
he computational environment of a smart stormwater system; the user
hen provides the control algorithm dictating how it should operate. For
eveloping control strategies, pystorms allows users the flexibility to
tilize any additional computational tools at their disposal. This can be
one either by leveraging any additional computational software stacks
f Python, or interfacing pystorms with other computing platforms
r languages (e.g., MATLAB, Julia).

The user first initializes a pystorms scenario by creating an in-
tance of it using the statement: pystorms.scenarios.<scenario
ame>(). As seen in the code example (Fig. 2), theta can be ini-

tialized with pystorms.scenarios.theta(). The initialization
configures the stormwater simulator with the computational repre-
sentations necessary to simulate the respective scenario, and returns
it as a Python object. This Python object (env in Fig. 2) can be
used to progress and/or pause the stormwater simulator, read and/or
write parameters to the network, and utilize any additional pystorms
functionality.

The pystorms programming interface is inspired by the principles
f control theory, where the control of a system is abstracted as a
ontrol loop in which a controller monitors the underlying state(s) of
he system and makes calculated adjustments to the system for it to

9 pystorms.org/docs

https://www.uknowledge.uky.edu/wdsrd
https://www.wateranalytics.org/EPANET
https://www.pystorms.org/docs/build/html/getting_started.html


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Fig. 1. pystorms abstracts the control of stormwater systems as scenarios, each characterized by an overlaying control system and an underlying stormwater network. The
overlaying control system (in orange) encapsulates what can be considered the stormwater control system’s virtual elements – that is, the components of the stormwater control
system that are changeable and/or readable by an implemented control algorithm – and include its Control Objectives, Observable States, and Controllable Assets. The underlying
stormwater network (in blue) represents the computational implementation of the hydraulic and hydrological elements of the stormwater control system, namely its Network
Topology and Event Driver. Table 1 presents a detailed description of these elements.
Table 1
A pystorms scenario is comprised of five distinct components: its Network Topology, an Event Driver, a set of Controllable Assets,
a set of Observable States, and the Control Objectives.

Network topology A network is the physical system of conduits (e.g. pipes, culverts), storage elements (e.g. retention and
detention basins), and any other subcatchment infrastructure (e.g. green infrastructure, wetlands) that
collect, convey, and/or treat stormwater runoff.

Event driver The event driver consists of any inputs or ‘‘disturbances’’ to the network that govern the generation
and flow of runoff. Most often, an event driver is the precipitation generating runoff in the
watershed, but can also include wastewater flows, tidal fluctuations, or other phenomena.

Controllable assets The controllable assets are the subset of the network topology that are equipped with valves, pumps,
or any other flow control infrastructure that can be actuated to manipulate stormwater flow.

Observable states The observable states are the collection of states in the network that can be accessed by the users
during a simulation. In the real world, these states are measured by a set of sensors installed at the
corresponding network locations.

Control objectives The overall goal or set of goals (e.g. preventing flooding, reducing erosion, minimizing overflows,
improving water quality) of manipulating the behavior of a stormwater network using controllable
assets during a simulation. A control strategy’s ability to achieve a particular objective is quantified
via a corresponding performance metric.
achieve a desired behavior. The basic control loop is implemented using
the following steps:

(1) Query the set of observable states in the stormwater network
at the current time-step;

(2) Compute control actions to manipulate the system to achieve
a desired behavior; and

(3) Implement the control actions by adjusting the settings of the
controllable assets.

The state of the underlying stormwater network in the scenario
can be queried using the corresponding method (Fig. 2, line 15). A
stepping method (Fig. 2, line 19) implements the control actions in
the stormwater network, progresses the simulation forward a time-step,
and returns the current status of the simulation, terminating using a
logical operator. The stepping method also implements actions in
the stormwater network and progresses the simulation being handled
by the environment object, which in this case is the Scenario theta
4

(Fig. 2, line 10). done is assigned True when the simulation has
terminated, and False otherwise.

During the each time-step of the simulation, the metrics that un-
derlie the scenario’s control objective are evaluated. This computed
value is then stored for each time-step, and can be accessed at any time
during the simulation using the performance method (Fig. 2, line 22).
Additional parameters are logged throughout the simulation. While an
initial set of these logged parameters is predefined, the user is able to
customize this set for any additional parameters of interest. The user
defines their controller using a custom method (Step (2)), which maps
the observed states to control actions (Fig. 2, line 4).

3.3. Architecture

The pystorms architecture follows an object oriented program-
ming paradigm and relies on classes as its core building blocks. While
the pystorms programming interface is designed with the intent to



Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Table 2
pystorms includes a curated collection of real world-inspired stormwater scenarios. Users
implement their own control algorithms.

Scenario Network topology Control objectives

alpha 0.12 km2 residential combined
sewer network

Minimize total combined sewer
overflow volume (5 weirs at
interceptor connections)

beta 1.3 km2 separated stormwater
network with a tidally-influenced
receiving river

Minimize flooding (1 storage
basin outlet, 1 pump, 1 inline
storage dam)

gamma 4 km2 highly urban separated
stormwater network

Maintain channel flows below
threshold and avoid flooding (11
detention pond outlets)

delta 2.5 km2 combined sewer network
in which the stormwater ponds
also serve as waterfront

Maintain water levels within
upper and lower thresholds for
water quality and aesthetic
objectives (4 storage basin
outlets; 1 infiltration basin inlet)

epsilon 67 km2 highly urban combined
sewer network

Maintain sewer network outlet
total suspended solids (TSS) load
below threshold and avoid
flooding (11 in-line storage dams)

zeta 1.8 km2 combined and separated
sewer network (based on the
Astlingen benchmarking network
(Schütze et al., 2017; Sun et al.,
2020))

Maximize flow to downstream
wastewater treatment plant and
minimize total combined sewer
overflow volume (4 storage basin
outlets)

theta 2 km2 idealized separated
stormwater network

Maintain the flows at the outlet
below a threshold and avoid
flooding (2 storage basin outlets)
e
s
f

s
i
w
u
c
w
o

d
t
s
s
f
i
s
C
l
p
s
f
p
o
i

be intuitive for all potential users, it particularly caters to those who
may only have a rudimentary understanding of stormwater dynamics
and/or basic familiarity with programming in Python. However, it
can also be customized to meet the requirements of researchers who
want to incorporate advanced functionality, such as custom water
quality or rainfall-runoff modules. For details on how to utilize pys-
torms modularity and customization, we direct the reader to its online
documentation.10

The pystorms architecture is organized to accomplish two tasks:
(1) configure the pystorms scenario, and (2) execute the pystorms
scenario. These two tasks are carried out using three core interacting
modules: environment, scenario, and config. These three mod-
ules interface with each other to build and execute a given scenario.
Fig. 3 provides a schematic of this architecture. The first two modules
handle the stormwater simulation, while the latter handles the compu-
tational representation of the stormwater networks and the metadata
pertaining to the control problem (i.e. states, actions, and objectives).

3.3.1. Configuration
The config module is used to manage the configuration in the

pystorms architecture. config contains a configuration file for each
scenario, which specifies the stormwater network, and then delineates
its observable states, controllable assets, and the set of parameters that
are used to compute its control objective’s corresponding performance
metric. The configuration files are written using YAML, a mark-up
language commonly used for developing configuration files in software
applications. With YAML, the parameters of interest defined in the
configuration file are formatted as vertical lists rather than data struc-
tures. As a result, the configuration file becomes more human-readable,
and creates a simple but scalable workflow for developing scenarios.
Example YML files are provided in the supplementary information of
this paper and the online guide.

10 github.com/kLabUM/pystorms
5

c

3.3.2. Simulation
Scenarios in pystorms are implemented as Python classes. To

nsure consistent functionality across scenarios, each scenario is in-
tantiated as its own independent class with an inherited structure
rom a base scenario module. The scenario classes interface their

corresponding configuration files with the stormwater simulator and
implement any of the functions specific to that scenario (e.g. func-
tions used for computing performance metrics of corresponding control
objectives).

The environment module is the interface between the stormwater
imulator (e.g. EPA-SWMM) and the scenarios. This module is specif-
cally included to ensure pystorms is able to remain agnostic to
hatever stormwater simulator is used. For instance, if a user wants to
tilize a customized hydrologic solver for simulating stormwater, they
an do so by modifying the environment module to call their solver
hen the scenarios query it, thus ensuring compatibility to a wide array
f simulators with minimal overhead.
pystorms uses SWMM as its default stormwater simulator. SWMM,

eveloped by the U.S. EPA, is an open-source stormwater simula-
ion model that is extensively used for the design and analysis of
tormwater systems across the world. Despite SWMM’s prevalence in
tormwater modeling, it has limited capability to simulate green in-
rastructure, pollutant transformations, and overland flooding. SWMM
s written in C, a low-level programming language that results in
ignificant computational efficiency. However, the tradeoff for using
becomes SWMM’s subsequent difficulty at being interfaced with the

atest scientific libraries, which are primarily developed in high-level
rogramming languages, such as Python. As a result, there have been
everal efforts over the years to build wrappers for SWMM such that its
unctionality can be exploited via these high-level languages. High-level
rogramming languages wrappers for SWMM have enabled the creation
f tools that enhance SWMM’s ability to model complex phenomenon
n

PySWMM is a Python package that not only provides a wrapper to
ommunicate with SWMM, but also yields a high-level user interface for

https://github.com/kLabUM/pystorms


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Fig. 2. This code snippet is an example implementation of pystorms for Scenario
theta, which is described in greater detail throughout Section 4. In this example, the
controller is implemented as a Python function block.

Fig. 3. pystorms is built with three interacting core modules: (i) config represents
the metadata and computational representations of the stormwater network and event
driver; (ii) environment acts as an interface for scenarios to interact with the
stormwater simulators; and (iii) scenario provides a consistent structure for the
scenarios in the package. A scenario object in pystorms inherits (represented by
arrows) from the base scenario class, and interfaces (represented by the line) with
the stormwater simulator though the environment.
6

querying the various stormwater parameters (McDonnell et al., 2020).
pystorms – by means of the environment module – interfaces
with SWMM using PySWMM, and as a result, all functionality included
in PySWMM can also be accessed using pystorms. Readers are di-
rected to the documentation11 for additional details and examples to
customize pystorms to meet their requirements.

3.4. Software availability

Developed in Python, pystorms is supported on all major oper-
ating systems (OSX, Windows, and Linux) and can be installed using
pip.12 pystorms is distributed under the GNU General Public GPLv3
license,13 which ensures that this package and its derivatives remain
open-source and can be used free of cost. Additionally, source code
for the package is available on Github.14 alongside comprehensive
documentation and tutorials to utilize and contribute to its broader
utilization and development15

4. Demo: Implementing and evaluating control strategies

Here, we demonstrate how pystorms facilitates developing smart
stormwater control strategies by evaluating the performance of two
control algorithms applied to Scenario theta.

4.1. Scenario theta

To demonstrate a simple example of a pystorms scenario, we can
focus on Scenario theta, an idealized stormwater network synthesized
for unit testing and rapid algorithm exploration. Scenario theta’s
network topology includes two 1000m3 storage basins connected in
parallel and draining into a shared downstream water body. The event
driver is a synthetic rain event lasting 9 hr with a peak intensity of
3.2 in hr−1. The observable states are the water levels at the two basins,
reported at 15min time-steps. DRAFT: theta is simulated at 30 sec
interval in to better represent the dynamics of the stormwater network.
The controllable assets are valves at the outlet of both storage basins,
adjustable at each time-step between 0 − 100% open. The control objec-
tive is to maintain the outflow into the downstream water body below
a specified threshold of 0.5m3 s−1, while simultaneously preventing
flooding at the basins. The ability of a control strategy to meet theta’s
control objective is quantified using a pre-defined performance metric
that computes a penalty for violating the control objective at each time-
step, and sums these penalties across the whole simulation. We provide
the specific details on this performance metric (Eq. (1a)) in Section 4
where we evaluate the performance of two different example control
strategies applied to theta.

Scenario theta has been developed for rapid prototyping and
unit testing of new control strategies. Because Scenario theta is an
idealized case, its corresponding performance objective is defined such
that a ‘‘perfect’’ score of 0 is achievable. We demonstrate how to utilize
Scenario theta in this manner by presenting two different control
strategies applied.

4.1.1. Implementating control strategies
While there exist many control strategies that can be adopted to

achieve theta’s control objective, we implement and compare two
basic strategies here: a simple rule-based control strategy, and the
Equal-filling Degree control strategy. Both control strategies adjust the
valve openings of theta’s two basin outlets to either retain or release

11 github.com/kLabUM/pystorms
12 pypi.org/project/pystorms
13 gnu.org/licenses/gpl-3.0.html
14 github.com/kLabUM/pystorms
15 pystorms.org

https://github.com/kLabUM/pystorms
https://pypi.org/project/pystorms/
https://www.gnu.org/licenses/gpl-3.0.html
https://github.com/kLabUM/pystorms
https://www.pystorms.org


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Fig. 4. The Equal-filling Controller maintains the flows at the outlet below a desired threshold by coordinating its actions such that it equally utilizes the storage in the controllable
assets of the network. Algorithm 1 and the corresponding code snippet illustrate the algorithm and its implementation as a function block in Python. An interactive example of
the algorithm implementation and its evaluation on Scenario theta can be accessed at pystorms.org/#ipynb/GoogleColab/theta.
storage depending on the observed states; however, the rule-based
control strategy illustrates a simple example that may be explored
by a first time user, while the Equal-filling Degree control strategy is
presented as an example of an established methodology widely used by
stormwater control practitioners.

Rule-based controller
The rule-based control strategy adjusts our basin outlets based on

their respective water levels. Specifically, each basin’s outlet setting
is equal to its relative water level (i.e., the current water level of the
basin divided by its maximum depth). Therefore, our control algorithm
will set a full basin’s outlet to 100% open, and a basin that is half full
will have its outlet set to 50% open, etc. While this strategy provides
a means to mitigate local flooding at each basin, it notably does not
consider the other control objective for the network’s outflow into the
downstream water body to stay below a given threshold. The python
code for this simple rule-based controller is shown in the supplementary
information of this paper, while the code for a more complex control
follows in next section.

Equal-filling degree controller
The equal-filling degree is a control strategy often applied to

stormwater networks with distributed stormwater storage assets, and
has been used in some cases as a starting point when comparing more
than one control strategies (Borsányi et al., 2008; Campisano et al.,
2000; Dirckx et al., 2011; Kroll et al., 2016; Vezzaro and Grum, 2014).
For this strategy, we begin by defining a storage asset’s ‘‘filling degree’’
– which is typically the ratio a storage asset is full based on its volume
or depth – and compute it for each asset in the collection system. The
algorithm seeks to ‘‘balance’’ these filling degrees across the system
based on its average. The exact manner in which this balancing is
carried out is not necessarily consistent in literature. Our method for
this balancing is delineated in the algorithm in Fig. 4. If all assets
have a filling degree equal to the average (i.e., all assets are equally
filled), then each should release an equal fraction of the target outflow.
Otherwise, the released flows across the assets should be differentiated
such that, when an asset has a filling degree less than the average, it
does not release any flow; but if an asset is greater than the average, it
releases flows based on its deviation from the average.

The implementation of the equal-filling degree algorithm using
pystorms can be seen in Fig. 4. We carry out the simulation for
each of the two algorithms, as well as for the uncontrolled case, in
which control actions are never implemented and the basin outlets are
always open. The resulting hydraulic behavior at the two basins and
7

the network’s outflow for each of these simulation runs can be seen in
Fig. 5.

4.1.2. Evaluating control strategies
The aim of Scenario theta is to find a control strategy that can

meet theta’s control objective to maintain the outflow into the down-
stream water body below a specified threshold of 0.5m3 s−1 and also
minimize flooding at the basins. As discussed in Section 3.1, we pre-
define a performance metric to quantify the control algorithm’s ability
to meet the corresponding control objective. For Scenario theta, this
performance metric, 𝑃 , is defined as:

𝑃 =
𝑇
∑

𝑡=0

(

𝑡 +
2
∑

𝑖=1
𝑖,𝑡

)

(1a)

𝑡 =

{

𝑄𝑡 − 0.5 , if 𝑄𝑡 > 0.5
0.0 , otherwise

(1b)

𝑖,𝑡 =

{

103 , if any flooding at basin 𝑖
0.0 , otherwise

(1c)

where 𝑡 is a flow exceedance penalty of the stormwater network’s
outflow, 𝑄𝑡, over the 0.5m3 s−1 threshold; and 𝑖,𝑡 is an arbitrary
flooding penalty of 103 added whenever there exists flooding at either
of our two basins, both calculated and summed across every time-step
𝑡 in the simulation. The performance metric, which is calculated across
the simulations for the uncontrolled case and both of the implemented
control algorithms, can be seen in Table 3. Additionally, corresponding
hydraulic behavior for all three cases at their network outlet and both
basins can be seen in Fig. 5. The equal-filling degree strategy is able
to achieve the control objective of the outflow threshold, as well as
avoidance of flooding. Alternatively, the rule-based control strategy
only is able to avoid flooding at the basins. The stormwater network
behavior for both strategies follow their corresponding implemented
algorithm. For example, as the rule-based control strategy does not
directly consider the outflow threshold when determining the imple-
mented control actions, it follows that the outflow in the network’s
outlet exceeds this threshold (see the outlet plot in Fig. 5). To support
variety of control algorithms, pystorms uses the general concept of
a performance metric in lieu of a formal control objective and cost
function. Depending on the choice of control algorithm, users can
create their control strategies and cost fictions to maximize the overall
performance. For example, while equal-filling may implicitly result
good implicit performance, the explicit control objective of equal-filling

is to maintain water level throughout assets.

https://colab.research.google.com/github/kLabUM/pystorms/blob/master/tutorials/Scenario_Theta.ipynb?hl=en


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Fig. 5. In Scenario theta, the equal-filling degree control strategy is successfully able to maintain the flows at the outlet of the watershed below the desired threshold of 0.5m3 s−1

by uniformly using the storage in the networks. Static rule-based control and uncontrolled responses of the networks are also presented for comparison. The maximum depth in
each of the two basins is 2m. The simplified network topology of Scenario theta is shown at the top of the figure.
The results for each implemented control strategy versus the uncon-
trolled case are also captured using theta’s performance metric seen
in Eq. (1). As the performance metric is ultimately a sum of penalties for
violating the control objective, a smaller calculated performance metric
value indicates a better performing control algorithm. The respective
performance metric values for each control strategy presented here can
be seen in Table 3. With a calculated performance metric of 0, the
equal-filling degree strategy meets theta’s control objective; compar-
atively, the rule-based and uncontrolled cases have higher performance
metric values, and thus, we can conclude perform worse than the
equal-filling degree.

4.2. Additional demos

For demonstration purposes, Scenario theta was chosen due to
its simplicity. For more complex examples, we direct the users to the
Github repository where a Jupyter Notebook has been developed for
each of the scenarios presented in Table 2, and a control strategy is
implemented and evaluated against the uncontrolled case using the
corresponding performance metric. The details for each scenario are
provided in the A. In particular, we direct the reader to Scenarios
beta (A.3), gamma (A.4), epsilon (A.6), and zeta (A.7), in which
advanced controllers have been implemented, and the development of
these controllers documented in previous research from Sadler et al.
(2020), Mullapudi et al. (2020), Troutman et al. (2020), and Sun et al.
(2020), respectively.

5. Discussion

The ability for stormwater systems to be rapidly modified is crit-
ical as communities prepare for climate change and more frequent,
uncertain, and destructive weather events. Moreover, often the most
basic control strategies can have large-scale impacts on the complex,
dynamic systems they operate, potentially leading to millions of dollars
in savings for the communities they serve. Even though sensor-actuator
components may be successfully deployed at individual sites through-
out a stormwater network, determining strategies for their coordination
across the watershed may only add further complexity. As a result,
there is a great need – along with numerous opportunities – to develop
8

and implement novel control strategies to transform stormwater sys-
tems. The sandboxing efforts of pystorms serves as an initial effort
to foster the development of these strategies. Moreover, we intend for
pystorms to serve as a catalyst for our research community to be
more expansive and comprehensive in its analysis of smart stormwater
control.

A critical limitation to progressing smart stormwater control re-
search forward is the inability to systematically develop and then
analyze smart stormwater simulation workflows and control strategies.
pystorms directly enables this development and analysis to become
more extensive. pystorms can be customized and adapted for a
multitude of applications beyond its initially-provided collection of sce-
narios, and additional research questions can be studied by assembling
new scenarios from the assortment of components of this scenario col-
lection. For example, for each of the scenarios we provide at the outset,
pystorms specifies only a subset of the scenario’s total observable
states that are able to be queried throughout the simulation. But this
initial subset of observable states is never claimed as the optimal; and
actually, identifying an optimal set of observable states is in and of itself
a rich area of research (Chacon-Hurtado et al., 2017; Sambito et al.,
2019; Bartos and Kerkez, 2020; Van Nguyen et al., 2021). Thus, new
scenarios can be made with different subsets of observable states (e.g.
flows, pollutant concentrations), and new research questions can now
be asked about which states may be most critical for informing control
actions to be taken.

In the current iteration of pystorms, we present one means for
assessing a control strategy via the scenario’s corresponding perfor-
mance metric (e.g. maintain flow below a threshold, avoid flooding).
However, pystorms can serve as a mechanism for developing and im-
plementing additional metrics. For example, by increasing the number
of controllable assets available out of the eleven pond outlets presented
in Scenario gamma, one can assess the scalability of a control algorithm
as the state–action space increases. Additionally, control algorithm
generalizability across storm characteristics can be assessed with the
multiple rain events provided in Scenario epsilon.

Beyond the coordination and integration of smart stormwater con-
trol methods, we also view a more expansive – and potentially con-
sequential – opportunity for pystorms to drive our research commu-
nity’s analysis of ‘‘control’’ to include the social and ethical implications

of its implementation. We recognize that the control of stormwater



Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.

r
t
p
e
i
l
e
w
i
t
s
E
d

a
S
c
b

r
a
i
o
c
a
b

Table 3
Calculated performance metric values from Eq. (1)
for simulations corresponding to the two implemented
control algorithms and the uncontrolled simulation. As
can be seen, the equal-filling degree control strategy
performs better than the rule-based control strategy,
which then outperforms the uncontrolled case.

Control strategy Performance metric

Uncontrolled 1630
Rule-based 1624
Equal-filling degree 0

systems operates within broader, and far more complex, socio-technical
systems, and as a result, the decisions made can have a profound
impact on the lives of people within those systems. Thus, in addi-
tion to water quantity and quality analyses, we impel our community
to also scrutinize their control strategies through the lens of social
equity and longterm community resilience and adaptiveness, such as
the decision framework developed by Ewing and Demir (2021). We
believe pystorms can help facilitate these analyses. For example, for
any of the provided scenarios, one could study the longterm social
implications of an adverse outcome that might occur regularly in the
same community due to an implemented control strategy by modifying
a scenario’s control objective and corresponding performance metric.

Finally, we encourage future users of pystorms to resist the natu-
al inclination towards fixating on a control algorithm’s performance at
he expense of its appropriateness. Our development of pystorms was
artly motivated by similar sets of data and libraries developed by the
lectrical and computer science communities over the past two decades
n an effort to evaluate their ever-growing assortment of machine-
earning algorithms (Deng, 2012; Russakovsky et al., 2015; Brockman
t al., 2016; Henderson et al., 2017). While their efforts have been
ildly successful at propelling the development of novel algorithms,

t has also been noted that much of that effort has been expended in
he ‘‘fine-tuning’’ and ‘‘hacking’’ of the various algorithms to achieve
ome sort of arbitrarily-defined ‘‘state-of-the-art’’ result (Torralba and
fros, 2011). While fine-tuning an algorithm’s behavior for a specific
ataset may indeed yield a better performance metric in pystorms,

this improved performance metric is not guaranteed to translate to the
physical system at hand. Validating these stormwater control strategies
requires much further analysis via their actual physical deployment.
Accordingly, we intend for pystorms to foster a collaborative and
thoughtful evaluation of stormwater control algorithms rather than a
myopic focus on performance metrics and competition.

6. Conclusions and next steps

pystorms provides a curated collection of scenarios, coupled with
an accessible programming interface, to enable the development and
quantitative evaluation of stormwater control algorithms. We have de-
veloped pystorms with the intent to make smart stormwater control
research more methodical and efficient. As shown with the demos
in Section 4 and accompanying tutorials, we have demonstrated how
users can quickly download and test pystorms and its scenarios on

basic computer with only a few lines of code. Additionally shown in
ection 4, pystorms facilitates rigorous evaluation by extricating the
ontrol algorithm implementation of a stormwater control strategy to
e applied and quantitatively compared across the example scenarios.

It is our hope that this package will emerge as a community-driven
esource that is able to address key knowledge gaps and enable the
dvancement of smart stormwater systems. To this extent, we see prox-
mate opportunities for the broader research community to collaborate
n pystorms by contributing their own stormwater scenarios and/or
ontrol algorithms to the package initiated here. Likewise, we encour-
ge the broader research community to further build upon pystorms
9

y imparting their own smart stormwater control instances using the
pystorms architecture and integrating their own stormwater control
simulation workflows into it. Furthermore, given the emergence of
new stormwater practices, such as Green Infrastructure, more research
is needed to model impacts of real-time control on these assets with
sufficient fidelity.

Declaration of competing interest

The authors declare the following financial interests/personal re-
lationships which may be considered as potential competing inter-
ests:Branko Kerkez reports financial support, administrative support,
and equipment, drugs, or supplies were provided by National Science
Foundation.

Data availability

All data and code have been made available on a public repository

Acknowledgments

This research was supported U.S. National Science Foundation,
Award Numbers: 1737432 and 1750744. Additionally, Argonne Na-
tional Laboratory’s contribution is based upon work supported by
Laboratory Directed Research and Development (LDRD) funding from
Argonne National Laboratory, provided by the Director, Office of Sci-
ence, of the U.S. Department of Energy under Contract No. DE-AC02-
06CH11357. We would also like to acknowledge the Great Lakes Water
Authority for their support.

Appendix A. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.envsoft.2023.105635.

References

Advanced Research Projects Agency–Energy, U.S. Department of Energy, 2016.
Generating Realistic Information for the Development of Distribution and Transmis-
sion Algorithms (GRID DATA) Program. https://arpa-e.energy.gov/technologies/
programs/grid-data.

Bartos, Matt, Kerkez, Branko, 2020. Observability-based sensor placement improves
contaminant tracing in river networks. Earth Space Sci. Open Arch. http://dx.doi.
org/10.1002/essoar.10504108.1.

Batty, Michael, Axhausen, Kay W, Giannotti, Fosca, Pozdnoukhov, Alexei, Bazzani, Ar-
mando, Wachowicz, Monica, Ouzounis, Georgios, Portugali, Yuval, 2012. Smart
cities of the future. Eur. Phys. J. Spec. Top. 214 (1), 481–518. http://dx.doi.org/
10.1140/epjst/e2012-01703-3.

Bibri, Simon Elias, Krogstie, John, 2017. Smart sustainable cities of the future: An
extensive interdisciplinary literature review. Sustainable Cities Soc. 31, 183–212.
http://dx.doi.org/10.1016/j.scs.2017.02.016.

Borsányi, Péter, Benedetti, Lorenzo, Dirckx, Geert, De Keyser, Webbey, Muschalla, Dirk,
Solvi, Anne-Marie, Vandenberghe, Veronique, Weyand, Michael, Vanrolleghem, Pe-
ter A., 2008. Modelling real-time control options on virtual sewer systems. J.
Environ. Eng. Sci. 7 (4), 395–410. http://dx.doi.org/10.1139/S08-004.

Bowes, Benjamin D, Tavakoli, Arash, Wang, Cheng, Heydarian, Arsalan, Behl, Madhur,
Beling, Peter A, Goodall, Jonathan L, 2021. Flood mitigation in coastal urban
catchments using real-time stormwater infrastructure control and reinforcement
learning. J. Hydroinform. 23 (3), 529–547. http://dx.doi.org/10.2166/hydro.2020.
080.

Brockman, Greg, Cheung, Vicki, Pettersson, Ludwig, Schneider, Jonas, Schulman, John,
Tang, Jie, Zaremba, Wojciech, 2016. OpenAI Gym. arXiv:arXiv:1606.01540.

Campisano, Alberto, Schilling, Wolfgang, Modica, Carlo, 2000. Regulators’ setup with
application to the Roma–Cecchignola combined sewer system. Urban Water 2 (3),
235–242. http://dx.doi.org/10.1016/S1462-0758(00)00061-3.

Chacon-Hurtado, J.C., Alfonso, L., Solomatine, D.P., 2017. Rainfall and streamflow
sensor network design: A review of applications, classification, and a proposed
framework. Hydrol. Earth Syst. Sci. 21 (6), 3071–3091. http://dx.doi.org/10.5194/
hess-21-3071-2017.

Chourabi, Hafedh, Nam, Taewoo, Walker, Shawn, Gil-Garcia, J. Ramon, Mellouli, Sehl,
Nahon, Karine, Pardo, Theresa A., Scholl, Hans Jochen, 2012. Understanding smart
cities: An integrative framework. In: Proceedings of the Annual Hawaii International
Conference on System Sciences. IEEE, pp. 2289–2297. http://dx.doi.org/10.1109/
HICSS.2012.615.

https://doi.org/10.1016/j.envsoft.2023.105635
https://arpa-e.energy.gov/technologies/programs/grid-data
https://arpa-e.energy.gov/technologies/programs/grid-data
https://arpa-e.energy.gov/technologies/programs/grid-data
http://dx.doi.org/10.1002/essoar.10504108.1
http://dx.doi.org/10.1002/essoar.10504108.1
http://dx.doi.org/10.1002/essoar.10504108.1
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1140/epjst/e2012-01703-3
http://dx.doi.org/10.1016/j.scs.2017.02.016
http://dx.doi.org/10.1139/S08-004
http://dx.doi.org/10.2166/hydro.2020.080
http://dx.doi.org/10.2166/hydro.2020.080
http://dx.doi.org/10.2166/hydro.2020.080
http://arxiv.org/abs/arXiv:1606.01540
http://dx.doi.org/10.1016/S1462-0758(00)00061-3
http://dx.doi.org/10.5194/hess-21-3071-2017
http://dx.doi.org/10.5194/hess-21-3071-2017
http://dx.doi.org/10.5194/hess-21-3071-2017
http://dx.doi.org/10.1109/HICSS.2012.615
http://dx.doi.org/10.1109/HICSS.2012.615
http://dx.doi.org/10.1109/HICSS.2012.615


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Deng, Li, 2012. The MNIST database of handwritten digit images for machine learning
research [best of the web]. IEEE Signal Process. Mag. 29 (6), 141–142.

Dirckx, G., Schütze, M., Kroll, S., Thoeye, Ch., De Gueldre, G., Van De Steene, B., 2011.
Cost-efficiency of RTC for CSO impact mitigation. Urban Water J. 8 (6), 367–377.
http://dx.doi.org/10.1080/1573062X.2011.630092.

Eggimann, Sven, Mutzner, Lena, Wani, Omar, Schneider, Mariane Yvonne, Spuh-
ler, Dorothee, Moy de Vitry, Matthew, Beutler, Philipp, Maurer, Max, 2017.
The potential of knowing more: A review of data-driven urban water manage-
ment. Environ. Sci. Technol. 51 (5), 2538–2553. http://dx.doi.org/10.1021/acs.
est.6b04267.

Ewing, Gregory, Demir, Ibrahim, 2021. An ethical decision-making framework with
serious gaming: A smart water case study on flooding. J. Hydroinform. http:
//dx.doi.org/10.2166/hydro.2021.097.

Gaborit, E., Anctil, François, Pelletier, Geneviève, Vanrolleghem, Peter A., 2016.
Exploring forecast-based management strategies for stormwater detention ponds.
Urban Water J. 13 (8), http://dx.doi.org/10.1080/1573062X.2015.1057172.

Gaborit, E., Muschalla, Dirk, Vallet, Bertrand, Vanrolleghem, Peter A., Anctil, François,
2013. Improving the performance of stormwater detention basins by real-time
control using rainfall forecasts. Urban Water J. 10 (4), 230–246. http://dx.doi.
org/10.1080/1573062X.2012.726229.

García, L., Barreiro-Gomez, J., Escobar, E., Téllez, D., Quijano, N., Ocampo-Martinez, C.,
2015. Modeling and real-time control of urban drainage systems: A review. Adv.
Water Resour. 85, 120–132. http://dx.doi.org/10.1016/j.advwatres.2015.08.007.

Harrison, Colin, Donnelly, Ian Abbott, 2011. A theory of smart cities. In: Proceedings
of the 55th Annual Meeting of the International Society for the Systems Sciences,
Vol. 55, no. 1.

Henderson, Peter, Islam, Riashat, Bachman, Philip, Pineau, Joelle, Precup, Doina,
Meger, David, 2017. Deep reinforcement learning that matters. arXiv preprint
arXiv:1709.06560.

Kerkez, Branko, Gruden, Cyndee, Lewis, Matthew, Montestruque, Luis, Quigley, Marcus,
Wong, Brandon, Bedig, Alex, Kertesz, Ruben, Braun, Tim, Cadwalader, Owen,
Poresky, Aaron, Pak, Carrie, 2016. Smarter stormwater systems. Environ. Sci.
Technol. 50 (14), 7267–7273. http://dx.doi.org/10.1021/acs.est.5b05870.

Kitchin, Rob, 2014. The real-time city? Big data and smart urbanism. GeoJournal 79
(1), 1–14. http://dx.doi.org/10.1007/s10708-013-9516-8.

Kroll, Stefan, Dirckx, Geert, Donckels, Brecht M.R., Van Dorpe, Mieke, Weemaes, Mar-
joleine, Willems, Patrick, 2016. Modelling real-time control of WWTP influent flow
under data scarcity. Water Sci. Technol. 73 (7), 1637–1643. http://dx.doi.org/10.
2166/wst.2015.641.

Lund, Nadia Schou Vorndran, Falk, Anne Katrine Vinther, Borup, Morten, Madsen, Hen-
rik, Steen Mikkelsen, Peter, 2018. Model predictive control of urban drainage
systems: A review and perspective towards smart real-time water management.
Crit. Rev. Environ. Sci. Technol. 48 (3), 279–339.

Marchi, Angela, Salomons, Elad, Ostfeld, Avi, Kapelan, Zoran, Simpson, Angus R.,
Zecchin, Aaron C., Maier, Holger R., Wu, Zheng Yi, Elsayed, Samir M.,
Song, Yuan, Walski, Tom, Stokes, Christopher, Wu, Wenyan, Dandy, Graeme C.,
Alvisi, Stefano, Creaco, Enrico, Franchini, Marco, Saldarriaga, Juan, Páez, Diego,
Hernández, David, Bohórquez, Jessica, Bent, Russell, Coffrin, Carleton, Judi, David,
McPherson, Tim, van Hentenryck, Pascal, Matos, José Pedro, Monteiro, An-
tónio Jorge, Matias, Natércia, Yoo, Do Guen, Lee, Ho Min, Kim, Joong Hoon,
Iglesias-Rey, Pedro L., Martínez-Solano, Francisco J., Mora-Meliá, Daniel,
Ribelles-Aguilar, José V., Guidolin, Michele, Fu, Guangtao, Reed, Patrick,
Wang, Qi, Liu, Haixing, McClymont, Kent, Johns, Matthew, Keedwell, Ed-
ward, Kandiah, Venu, Jasper, Micah Nathanael, Drake, Kristen, Shafiee, Ehsan,
Barandouzi, Mehdy Amirkhanzadeh, Berglund, Andrew David, Brill, Downey,
Mahinthakumar, Gnanamanikam, Ranjithan, Ranji, Zechman, Emily Michelle,
Morley, Mark S., Tricarico, Carla, de Marinis, Giovanni, Tolson, Bryan A.,
Khedr, Ayman, Asadzadeh, Masoud, 2014. Battle of the water networks II. J. Water
Res. Plan. Manag. 140 (7), 04014009. http://dx.doi.org/10.1061/(ASCE)WR.1943-
5452.0000378.

McDonnell, Bryant E, Ratliff, Katherine, Tryby, Michael E, Wu, Jennifer Jia Xin, Mulla-
pudi, Abhiram, 2020. PySWMM: The Python interface to stormwater management
model (SWMM). J. Open Source Softw. 5 (52), 2292.

Montestruque, Luis A., 2018. An agent-based storm water management system. In:
Tsakalides, Panagiotis, Panousopoulou, Athanasia, Tsagkatakis, Grigorios, Mon-
testruque, Luis (Eds.), Smart Water Grids: A Cyber-Physical Systems Approach. CRC
Press, pp. 151–168.

Mullapudi, Abhiram, Lewis, Matthew J, Gruden, Cyndee L, Kerkez, Branko, 2020. Deep
reinforcement learning for the real time control of stormwater systems. Adv. Water
Resour. 140, 103600.

Mullapudi, Abhiram, Wong, Brandon P., Kerkez, Branko, 2017. Emerging investigators
series: Building a theory for smart stormwater systems. Environ. Sci. Water Res.
Technol. 3 (1), http://dx.doi.org/10.1039/C6EW00211K.

Newman, A.J., Clark, M.P., Sampson, K., Wood, A., Hay, L.E., Bock, A., Viger, R.J.,
Blodgett, D., Brekke, L., Arnold, J.R., Hopson, T., Duan, Q., 2015. Development
of a large-sample watershed-scale hydrometeorological data set for the contiguous
USA: Data set characteristics and assessment of regional variability in hydrologic
model performance. Hydrol. Earth Syst. Sci. 19 (1), 209–223. http://dx.doi.org/10.
5194/hess-19-209-2015.
10
Ocampo-Martinez, Carlos, 2010. Model predictive control of wastewater systems.
Springer, pp. 1–236. http://dx.doi.org/10.1007/978-1-84996-353-4.

Ostfeld, Avi, Uber, James G., Salomons, Elad, Berry, Jonathan W., Hart, William E.,
Phillips, Cindy A., Watson, Jean-Paul, Dorini, Gianluca, Jonkergouw, Philip,
Kapelan, Zoran, di Pierro, Francesco, Khu, Soon-Thiam, Savic, Dragan, Eli-
ades, Demetrios, Polycarpou, Marios, Ghimire, Santosh R., Barkdoll, Brian D.,
Gueli, Roberto, Huang, Jinhui J., McBean, Edward A., James, William, Krause, An-
dreas, Leskovec, Jure, Isovitsch, Shannon, Xu, Jianhua, Guestrin, Carlos, Van-
Briesen, Jeanne, Small, Mitchell, Fischbeck, Paul, Preis, Ami, Propato, Marco,
Piller, Olivier, Trachtman, Gary B., Wu, Zheng Yi, Walski, Tom, 2008. The battle
of the water sensor networks (BWSN): A design challenge for engineers and
algorithms. J. Water Res. Plan. Manag. 134 (6), 556–568. http://dx.doi.org/10.
1061/(ASCE)0733-9496(2008)134:6(556).

Persaud, P.P., Akin, A.A., Kerkez, B., McCarthy, D.T., Hathaway, J.M., 2019. Real time
control schemes for improving water quality from bioretention cells. Blue-Green
Syst. 1 (1), 55–71. http://dx.doi.org/10.2166/bgs.2019.924.

Rossman, L., 2015. Storm Water Management Model User’s Manual Version 5.1 -
Manual, EPA/600/R-14/413 (NTIS EPA/600/R-14/413b) ed. US EPA Office of
Research and Development, Washington, DC.

Rossman, L., 2017. Storm Water Management Model Reference Manual Volume II –
Hydraulics, EPA/600/R-17/111 ed. US EPA Office of Research and Development,
Washington, DC.

Rossman, L., Huber, W., 2015. Storm Water Management Model Reference Manual
Volume I – Hydrology, EPA/600/R-15/162A ed. US EPA Office of Research and
Development, Washington, DC.

Rossman, L., Huber, W., 2016. Storm Water Management Model Reference Manual
Volume III – Water Quality, EPA/600/R-16/093 ed. US EPA Office of Research
and Development, Washington, DC.

Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean,
Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, et al., 2015.
ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115 (3),
211–252. http://dx.doi.org/10.1007/s11263-015-0816-y.

Sadler, Jeffrey M., Goodall, Jonathan L., Behl, Madhur, Bowes, Benjamin D., Morsy, Mo-
hamed M., 2020. Exploring Real-time Control of Stormwater Systems for Sea Level
Rise. J. Hydrol. http://dx.doi.org/10.1016/j.jhydrol.2020.124571.

Sadler, Jeffrey M., Goodall, Jonathan L., Behl, Madhur, Morsy, Mohamed M., Cul-
ver, Teresa, Bowes, Benjamin D., 2019. Leveraging open source software and
parallel computing for model predictive control of urban drainage systems using
EPA-SWMM5. Environ. Model. Softw. http://dx.doi.org/10.1016/j.envsoft.2019.07.
009.

Sambito, Mariacrocetta, Di Cristo, Cristiana, Freni, Gabriele, Leopardi, Angelo, 2019.
Optimal water quality sensor positioning in urban drainage systems for illicit
intrusion identification. J. Hydroinform. 22 (1), 46–60. http://dx.doi.org/10.2166/
hydro.2019.036.

Schilling, Wolfgang, 1989. Real-time control of urban drainage systems: The state-of-
the-art. IAWPRC Task Group on Real-Time Control of Urban Drainage Systems,
London.

Schütze, Manfred, Campisano, Alberto, Colas, Hubert, Schilling, Wolfgang, Vanrol-
leghem, Peter A., 2004. Real time control of urban wastewater systems - Where
do we stand today? J. Hydrol. 299 (3–4), 335–348. http://dx.doi.org/10.1016/j.
jhydrol.2004.08.010.

Schütze, Manfred, Lange, Maja, Pabst, Michael, Haas, Ulrich, 2017. Astlingen - a
benchmark for real time control (RTC). Water Sci. Technol. 2017 (2), 552–560.

Shishegar, Shadab, Duchesne, Sophie, Pelletier, Geneviève, 2018. Optimization methods
applied to stormwater management problems: A review. Urban Water J. 15 (3),
276–286.

Sun, Congcong, Svensen, Jan Lorenz, Borup, Morten, Puig, Vicenç, Cembrano, Gabriela,
Vezzaro, Luca, 2020. An MPC-enabled SWMM implementation of the Astlingen
RTC benchmarking network. Water 12 (1034), 1–13. http://dx.doi.org/10.3390/
w12041034.

Torralba, Antonio, Efros, Alexei A., 2011. Unbiased look at dataset bias. In: CVPR 2011.
IEEE, pp. 1521–1528.

Trotta, Paul D., Labadie, J.W., Grigg, N.S., 1977. Automatic control strategies for urban
stormwater. J. Hydraul. Div. 1443–1459.

Troutman, Sara C., Love, Nancy G., Kerkez, Branko, 2020. Balancing water quality and
flows in combined sewer systems using real-time control. Environ. Sci. Water Res.
Technol. 6 (5), 1357–1369.

van Daal, Petra, Gruber, Günter, Langeveld, Jeroen, Muschalla, Dirk, Clemens, François,
2017. Performance evaluation of real time control in urban wastewater systems in
practice: Review and perspective. Environ. Model. Softw. 95, 90–101.

Van Nguyen, Lam, Bui, Dieu Tien, Seidu, Razak, 2021. Identification of Sensitive Factors
for Placement of Flood Monitoring Sensors in Wastewater/Stormwater Network
Using GIS-Based Fuzzy Analytical Hierarchy Process: A Case of Study in Ålesund,
Norway. In: Tien Bui, Dieu, Tran, Hai Thanh, Bui, Xuan-Nam (Eds.), Proceedings
of the International Conference on Innovations for Sustainable and Responsible
Mining. Springer International Publishing, pp. 79–97.

Vanrolleghem, Peter A., Benedetti, Lorenzo, Meirlaen, J., 2005. Modelling and real-time
control of the integrated urban wastewater system. Environ. Model. Softw. 20 (4),
427–442. http://dx.doi.org/10.1016/j.envsoft.2004.02.004.

http://refhub.elsevier.com/S1364-8152(23)00021-X/sb11
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb11
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb11
http://dx.doi.org/10.1080/1573062X.2011.630092
http://dx.doi.org/10.1021/acs.est.6b04267
http://dx.doi.org/10.1021/acs.est.6b04267
http://dx.doi.org/10.1021/acs.est.6b04267
http://dx.doi.org/10.2166/hydro.2021.097
http://dx.doi.org/10.2166/hydro.2021.097
http://dx.doi.org/10.2166/hydro.2021.097
http://dx.doi.org/10.1080/1573062X.2015.1057172
http://dx.doi.org/10.1080/1573062X.2012.726229
http://dx.doi.org/10.1080/1573062X.2012.726229
http://dx.doi.org/10.1080/1573062X.2012.726229
http://dx.doi.org/10.1016/j.advwatres.2015.08.007
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb18
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb18
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb18
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb18
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb18
http://arxiv.org/abs/1709.06560
http://dx.doi.org/10.1021/acs.est.5b05870
http://dx.doi.org/10.1007/s10708-013-9516-8
http://dx.doi.org/10.2166/wst.2015.641
http://dx.doi.org/10.2166/wst.2015.641
http://dx.doi.org/10.2166/wst.2015.641
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb23
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000378
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000378
http://dx.doi.org/10.1061/(ASCE)WR.1943-5452.0000378
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb25
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb25
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb25
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb25
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb25
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb26
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb27
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb27
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb27
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb27
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb27
http://dx.doi.org/10.1039/C6EW00211K
http://dx.doi.org/10.5194/hess-19-209-2015
http://dx.doi.org/10.5194/hess-19-209-2015
http://dx.doi.org/10.5194/hess-19-209-2015
http://dx.doi.org/10.1007/978-1-84996-353-4
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.1061/(ASCE)0733-9496(2008)134:6(556)
http://dx.doi.org/10.2166/bgs.2019.924
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb33
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb33
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb33
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb33
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb33
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb34
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb34
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb34
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb34
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb34
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb35
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb35
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb35
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb35
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb35
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb36
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb36
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb36
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb36
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb36
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1016/j.jhydrol.2020.124571
http://dx.doi.org/10.1016/j.envsoft.2019.07.009
http://dx.doi.org/10.1016/j.envsoft.2019.07.009
http://dx.doi.org/10.1016/j.envsoft.2019.07.009
http://dx.doi.org/10.2166/hydro.2019.036
http://dx.doi.org/10.2166/hydro.2019.036
http://dx.doi.org/10.2166/hydro.2019.036
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb41
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb41
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb41
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb41
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb41
http://dx.doi.org/10.1016/j.jhydrol.2004.08.010
http://dx.doi.org/10.1016/j.jhydrol.2004.08.010
http://dx.doi.org/10.1016/j.jhydrol.2004.08.010
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb43
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb43
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb43
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb44
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb44
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb44
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb44
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb44
http://dx.doi.org/10.3390/w12041034
http://dx.doi.org/10.3390/w12041034
http://dx.doi.org/10.3390/w12041034
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb46
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb46
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb46
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb47
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb47
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb47
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb48
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb48
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb48
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb48
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb48
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb49
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb49
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb49
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb49
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb49
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://refhub.elsevier.com/S1364-8152(23)00021-X/sb50
http://dx.doi.org/10.1016/j.envsoft.2004.02.004


Environmental Modelling and Software 162 (2023) 105635S.P. Rimer et al.
Vezzaro, Luca, Grum, Morten, 2014. A generalised Dynamic Overflow Risk Assessment
(DORA) for real time control of urban drainage systems. J. Hydrol. 515, 292–303.
http://dx.doi.org/10.1016/j.jhydrol.2014.05.019.

Walski, Thomas M., Brill, E. Downey, Gessler, Johannes, Goulter, Ian C., Jepp-
son, Roland M., Lansey, Kevin, Lee, Han-Lin, Liebman, Jon C., Mays, Larry,
Morgan, David R., Ormsbee, Lindell, 1987. Battle of the network models: Epilogue.
J. Water Res. Plan. Manag. 113 (2), 191–203. http://dx.doi.org/10.1061/(ASCE)
0733-9496(1987)113:2(191).
11
Yuan, Zhiguo, Olsson, Gustaf, Cardell-Oliver, Rachel, van Schagen, Kim, Marchi, Angela,
Deletic, Ana, Urich, Christian, Rauch, Wolfgang, Liu, Yanchen, Jiang, Guangming,
2019. Sweating the assets - The role of instrumentation, control and automation in
urban water systems. Water Res. 155, 381–402. http://dx.doi.org/10.1016/j.watres.
2019.02.034.

http://dx.doi.org/10.1016/j.jhydrol.2014.05.019
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:2(191)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:2(191)
http://dx.doi.org/10.1061/(ASCE)0733-9496(1987)113:2(191)
http://dx.doi.org/10.1016/j.watres.2019.02.034
http://dx.doi.org/10.1016/j.watres.2019.02.034
http://dx.doi.org/10.1016/j.watres.2019.02.034

	pystorms: A simulation sandbox for the development and evaluation of stormwater control algorithms
	Introduction
	Background
	Control of Stormwater Systems
	Simulating Stormwater Systems
	Implementing Adaptive Control

	The Need for a Simulation Sandbox

	pystorms 
	Scenarios
	Workflow
	Architecture
	Configuration
	Simulation

	Software Availability

	Demo: Implementing and Evaluating Control Strategies
	Scenario theta 
	Implementating Control Strategies
	Rule-based Controller
	Equal-filling Degree Controller
	Evaluating Control Strategies

	Additional demos

	Discussion
	Conclusions and Next Steps
	Declaration of Competing Interest
	Data availability
	Acknowledgments
	Appendix A. Supplementary data
	References


